キャディ株式会社

求人掲載中
AI・ビッグデータ
正社員
求人とのマッチ率 限定公開 %

機械学習エンジニア

想定年収
600~1,100万円
勤務地
東京都
仕事内容
キャディには、受発注や製造工程のプロセスの中で生れまた大規模なデータがあります。一連のプロセスに紐づく全てのデータを活用することが、モノづくり産業のプロセス全体の改善につながるとキャディは信じています。
機械学習エンジニアは、機械学習、データサイエンスにおけるモデルの開発および、それらを継続的にサービスに対して提供できる基盤の構築、保守、運用を行います。 キャディの持つデータを活用し、プロダクトに価値を提供できる高い精度でのモデリング技術、およびチームでの安定したシステム開発を期待します。
以下に業務例を示します。実際の業務はこれに限定されるものではありません。入社後の業務内容は、技術や専門知識、経験等を考慮のうえ決定します。

【業務例1】図面に対する画像認識システムの構築
キャディが保有するパートナー様の図面画像を解析し、図面上に記載された情報を抽出する技術開発を行います。

・図面上の情報抽出を行うバッチ処理、APIの開発、CI/CDを用いたデプロイ
・画像からの特徴抽出、それらを用いた類似画像検索システムの構築、保守、運用
・Deep Learningを用いた図面の分類モデルの構築、アノテーションの仕組み作り
・作成した画像認識モデルのデモやレポートの作成および社内外への技術説明
・図面情報に関する課題の社内外からのヒアリングおよび要件を満たせるタスク定義
・高いモデル精度を保証するための実験、分析、可視化

キャディ株式会社募集概要

勤務地
東京都台東区
応募資格
・機械学習、統計、線形代数、コンピュータサイエンスに関連したアルゴリズムの基礎知識
・機械学習を活用したビジネス上の課題を解決する3年以上の業務経験
・機械学習、統計のモデルの精度改善の経験
・PythonまたはRustを用いたWebサービスに関わるAPIの開発、運用経験
・GCP、AWSなどクラウドサービスを利用した業務経験
・Docker等のコンテナ技術の基礎的知識
・Git、CI/CDを用いたチーム開発、運用経験

【歓迎】
・GPUを用いたデータ処理の経験(CUDA、OpenCL、cudf、CuPyなど)
・Vertex Pipeline、kubeflow、Apache Beam、Sparkなどのデータパイプライン技術を用いた開発経験
勤務時間詳細
就業時間:9:00~18:00
休日休暇
土日、祝日、年末年始、夏季休暇、年次有給休暇、慶弔休暇、入社時特別休暇(入社後半年未満でも3日間まで有給休暇取得可)
待遇・福利厚生
健康保険 厚生年金 雇用保険 労災保険
・交通費支給(上限3万円)・諸休暇(夏季休暇、年末年始休暇、リフレッシュ休暇、忌引き休暇等)・補助金(引っ越し補助金、子ども手当、結婚お祝い金等)・健康診断・婦人科検診費用負担
採用人数
若干名

キャディ株式会社その他の求人

正社員

キャディ株式会社

データサイエンティスト(社内業務改善に向けたコンサル/累計資金調達額99.3億円/製造業の受発注プ)

求人とのマッチ率 限定公開 %
想定年収 600~1,100万円
勤務地 東京都

詳細を見る

正社員

キャディ株式会社

MLOpsエンジニア(累計資金調達額99.3億円/製造業の受発注プラットフォーム)

求人とのマッチ率 限定公開 %
想定年収 600~1,100万円
勤務地 東京都

詳細を見る

正社員

キャディ株式会社

アルゴリズムエンジニア(累計資金調達額99.3億円/製造業の受発注プラットフォーム)

求人とのマッチ率 限定公開 %
想定年収 600~1,100万円
勤務地 東京都

詳細を見る

キャディ株式会社の求人一覧へ

「この企業をフォロー」で口コミや求人情報の新着をお知らせします

この企業をフォローする

あなたの会社を評価しましょう

口コミを投稿する

同業界企業の求人

正社員

株式会社ゆめみ

【フルリモート】データアナリスト(ハイクラス)

求人とのマッチ率 限定公開 %
仕事内容
キャディには、受発注や製造工程のプロセスの中で生れまた大規模なデータがあります。一連のプロセスに紐づく全てのデータを活用することが、モノづくり産業のプロセス全体の改善につながるとキャディは信じています。
機械学習エンジニアは、機械学習、データサイエンスにおけるモデルの開発および、それらを継続的にサービスに対して提供できる基盤の構築、保守、運用を行います。 キャディの持つデータを活用し、プロダクトに価値を提供できる高い精度でのモデリング技術、およびチームでの安定したシステム開発を期待します。
以下に業務例を示します。実際の業務はこれに限定されるものではありません。入社後の業務内容は、技術や専門知識、経験等を考慮のうえ決定します。

【業務例1】図面に対する画像認識システムの構築
キャディが保有するパートナー様の図面画像を解析し、図面上に記載された情報を抽出する技術開発を行います。

・図面上の情報抽出を行うバッチ処理、APIの開発、CI/CDを用いたデプロイ
・画像からの特徴抽出、それらを用いた類似画像検索システムの構築、保守、運用
・Deep Learningを用いた図面の分類モデルの構築、アノテーションの仕組み作り
・作成した画像認識モデルのデモやレポートの作成および社内外への技術説明
・図面情報に関する課題の社内外からのヒアリングおよび要件を満たせるタスク定義
・高いモデル精度を保証するための実験、分析、可視化
想定年収
800~1,000万円
勤務地
大阪府
正社員

株式会社PKSHA Technology

事業推進(東大との産学連携しているベンチャー)

求人とのマッチ率 限定公開 %
仕事内容
キャディには、受発注や製造工程のプロセスの中で生れまた大規模なデータがあります。一連のプロセスに紐づく全てのデータを活用することが、モノづくり産業のプロセス全体の改善につながるとキャディは信じています。
機械学習エンジニアは、機械学習、データサイエンスにおけるモデルの開発および、それらを継続的にサービスに対して提供できる基盤の構築、保守、運用を行います。 キャディの持つデータを活用し、プロダクトに価値を提供できる高い精度でのモデリング技術、およびチームでの安定したシステム開発を期待します。
以下に業務例を示します。実際の業務はこれに限定されるものではありません。入社後の業務内容は、技術や専門知識、経験等を考慮のうえ決定します。

【業務例1】図面に対する画像認識システムの構築
キャディが保有するパートナー様の図面画像を解析し、図面上に記載された情報を抽出する技術開発を行います。

・図面上の情報抽出を行うバッチ処理、APIの開発、CI/CDを用いたデプロイ
・画像からの特徴抽出、それらを用いた類似画像検索システムの構築、保守、運用
・Deep Learningを用いた図面の分類モデルの構築、アノテーションの仕組み作り
・作成した画像認識モデルのデモやレポートの作成および社内外への技術説明
・図面情報に関する課題の社内外からのヒアリングおよび要件を満たせるタスク定義
・高いモデル精度を保証するための実験、分析、可視化
想定年収
750~1,800万円
勤務地
東京都
正社員

株式会社お金のデザイン

インフラエンジニア(資産運用サービス THEO)

求人とのマッチ率 限定公開 %
仕事内容
キャディには、受発注や製造工程のプロセスの中で生れまた大規模なデータがあります。一連のプロセスに紐づく全てのデータを活用することが、モノづくり産業のプロセス全体の改善につながるとキャディは信じています。
機械学習エンジニアは、機械学習、データサイエンスにおけるモデルの開発および、それらを継続的にサービスに対して提供できる基盤の構築、保守、運用を行います。 キャディの持つデータを活用し、プロダクトに価値を提供できる高い精度でのモデリング技術、およびチームでの安定したシステム開発を期待します。
以下に業務例を示します。実際の業務はこれに限定されるものではありません。入社後の業務内容は、技術や専門知識、経験等を考慮のうえ決定します。

【業務例1】図面に対する画像認識システムの構築
キャディが保有するパートナー様の図面画像を解析し、図面上に記載された情報を抽出する技術開発を行います。

・図面上の情報抽出を行うバッチ処理、APIの開発、CI/CDを用いたデプロイ
・画像からの特徴抽出、それらを用いた類似画像検索システムの構築、保守、運用
・Deep Learningを用いた図面の分類モデルの構築、アノテーションの仕組み作り
・作成した画像認識モデルのデモやレポートの作成および社内外への技術説明
・図面情報に関する課題の社内外からのヒアリングおよび要件を満たせるタスク定義
・高いモデル精度を保証するための実験、分析、可視化
想定年収
600~850万円
勤務地
東京都
同業界企業の求人一覧へ

あなたの転職への不安や悩みを
Geeklyにお聞かせください

まずは相談してみる